42 research outputs found

    SARAS: a precision system for measurement of the Cosmic Radio Background and signatures from the Epoch of Reionization

    Full text link
    SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5-175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.Comment: 49 pages, 17 figure

    Effects of Antenna Beam Chromaticity on Redshifted 21~cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    Full text link
    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21~cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a framework to set cosmologically-motivated design specifications on these reflections to prevent further EoR signal degradation. We show HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect EoR signal in line-of-sight kk-modes, k0.2hk_\parallel \gtrsim 0.2\,h~Mpc1^{-1}, with high significance. All baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.Comment: 11 pages, 6 figures (10 total including subfigures), submitted to Ap

    The Hydrogen Epoch of Reionization Array Dish II: Characterization of Spectral Structure with Electromagnetic Simulations and its science Implications

    Get PDF
    We use time-domain electromagnetic simulations to determine the spectral characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna. These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish's design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA's suspended feed and its parabolic dish reflector that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a negligible impact on HERA's ability to constrain EoR parameters. It follows that despite the reflections they introduce, dishes are effective for increasing the sensitivity of EoR experiments at relatively low cost. We find that electromagnetic resonances in the HERA feed's cylindrical skirt, which is intended to reduce cross coupling and beam ellipticity, introduces significant power at large delays (40-40 dB at 200 ns) which can lead to some loss of measurable Fourier modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the antenna is sufficiently smooth for delay filtering to contain foreground emission at line-of-sight wave numbers below k0.2k_\parallel \lesssim 0.2 hhMpc1^{-1}, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on parameters associated with the astrophysics of reionization.Comment: Accepted to ApJ, 18 pages, 17 Figures. Replacement matches accepted manuscrip

    The Hydrogen Epoch of Reionization Array Dish I: Beam Pattern Measurements and Science Implications

    Full text link
    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the Epoch of Reionization (EOR). Drawing on lessons from the Murchison Widefield Array (MWA) and the Precision Array for Probing the Epoch of Reionization (PAPER), HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. Not only does the dish determine overall sensitivity, it affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. We focus in this paper on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay, and thus, apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m^2 in the optimal dish/feed configuration, implying HERA-320 should detect the EOR power spectrum at z~9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations, and 74.3 using a foreground subtraction approach. Lastly we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.Comment: 13 pages, 9 figures. Replaced to match accepted ApJ versio

    Hydrogen Epoch of Reionization Array (HERA)

    Get PDF
    The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z=612z=6-12), and to explore earlier epochs of our Cosmic Dawn (z30z\sim30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA's scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table

    HI 21cm Cosmology and the Bi-spectrum: Closure Diagnostics in Massively Redundant Interferometric Arrays

    Full text link
    New massively redundant low frequency arrays allow for a novel investigation of closure relations in interferometry. We employ commissioning data from the Hydrogen Epoch of Reionization Array to investigate closure quantities in this densely packed grid array of 14m antennas operating at 100 MHz to 200 MHz. We investigate techniques that utilize closure phase spectra for redundant triads to estimate departures from redundancy for redundant baseline visibilities. We find a median absolute deviation from redundancy in closure phase across the observed frequency range of about 4.5deg. This value translates into a non-redundancy per visibility phase of about 2.6deg, using prototype electronics. The median absolute deviations from redundancy decrease with longer baselines. We show that closure phase spectra can be used to identify ill-behaved antennas in the array, independent of calibration. We investigate the temporal behavior of closure spectra. The Allan variance increases after a one minute stride time, due to passage of the sky through the primary beam of the transit telescope. However, the closure spectra repeat to well within the noise per measurement at corresponding local sidereal times (LST) from day to day. In future papers in this series we will develop the technique of using closure phase spectra in the search for the HI 21cm signal from cosmic reionization.Comment: 32 pages. 11 figures. Accepted to Radio Scienc

    Optimizing Sparse RFI Prediction using Deep Learning

    Get PDF
    Radio Frequency Interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array grow larger in number of receivers. To address this, we present a Deep Fully Convolutional Neural Network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known "ground truth" dataset for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6×105\times 10^{5} HERA time-ordered 1024 channeled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time-frequency context which increases discrimination between RFI and Non-RFI. The inclusion of phase when predicting achieves a Recall of 0.81, Precision of 0.58, and F2F_{2} score of 0.75 as applied to our HERA-67 observations.Comment: 11 pages, 7 figure

    Mitigating Internal Instrument Coupling for 21 cm Cosmology. II. A Method Demonstration with the Hydrogen Epoch of Reionization Array

    Get PDF
    We present a study of internal reflection and cross-coupling systematics in Phase I of the Hydrogen Epoch of Reionization Array (HERA). In a companion paper, we outlined the mathematical formalism for such systematics and presented algorithms for modeling and removing them from the data. In this work, we apply these techniques to data from HERA's first observing season as a method demonstration. The data show evidence for systematics that, without removal, would hinder a detection of the 21 cm power spectrum for the targeted Epoch of Reionization (EoR) line-of-sight modes in the range 0.2 h −1 Mpc−1 < k{k}_{\parallel } < 0.5 h −1 Mpc−1. In particular, we find evidence for nonnegligible amounts of spectral structure in the raw autocorrelations that overlaps with the EoR window and is suggestive of complex instrumental effects. Through systematic modeling on a single night of data, we find we can recover these modes in the power spectrum down to the integrated noise floor, achieving a dynamic range in the EoR window of 106 in power (mK2 units) with respect to the bright galactic foreground signal. Future work with deeper integrations will help determine whether these systematics can continue to be mitigated down to EoR levels. For future observing seasons, HERA will have upgraded analog and digital hardware to better control these systematics in the field

    Detection of Cosmic Structures using the Bispectrum Phase. II. First Results from Application to Cosmic Reionization Using the Hydrogen Epoch of Reionization Array

    Get PDF
    Characterizing the epoch of reionization (EoR) at z6z\gtrsim 6 via the redshifted 21 cm line of neutral Hydrogen (HI) is critical to modern astrophysics and cosmology, and thus a key science goal of many current and planned low-frequency radio telescopes. The primary challenge to detecting this signal is the overwhelmingly bright foreground emission at these frequencies, placing stringent requirements on the knowledge of the instruments and inaccuracies in analyses. Results from these experiments have largely been limited not by thermal sensitivity but by systematics, particularly caused by the inability to calibrate the instrument to high accuracy. The interferometric bispectrum phase is immune to antenna-based calibration and errors therein, and presents an independent alternative to detect the EoR HI fluctuations while largely avoiding calibration systematics. Here, we provide a demonstration of this technique on a subset of data from the Hydrogen Epoch of Reionization Array (HERA) to place approximate constraints on the brightness temperature of the intergalactic medium (IGM). From this limited data, at z=7.7z=7.7 we infer "1σ1\sigma" upper limits on the IGM brightness temperature to be 316\le 316 "pseudo" mK at κ=0.33\kappa_\parallel=0.33 "pseudo" hh Mpc1^{-1} (data-limited) and 1000\le 1000 "pseudo" mK at κ=0.875\kappa_\parallel=0.875 "pseudo" hh Mpc1^{-1} (noise-limited). The "pseudo" units denote only an approximate and not an exact correspondence to the actual distance scales and brightness temperatures. By propagating models in parallel to the data analysis, we confirm that the dynamic range required to separate the cosmic HI signal from the foregrounds is similar to that in standard approaches, and the power spectrum of the bispectrum phase is still data-limited (at 106\gtrsim 10^6 dynamic range) indicating scope for further improvement in sensitivity as the array build-out continues.Comment: 22 pages, 12 figures (including sub-figures). Published in PhRvD. Abstract may be slightly abridged compared to the actual manuscript due to length limitations on arXi
    corecore